Signal Conditioning Amplifier

FEATURES

- Accepts all strain gage inputs (foil and piezoresistive), potentiometers, DCDT's, etc
- Selectable bridge excitation, 0.7 to 15 Vdc (11 steps), plus 0.2 to 7 Vdc continuously variable
- Fully adjustable calibrated gain from 1 to 11000
- Dual-range ($\pm 5000 \mu \varepsilon$ and $\pm 25000 \mu \varepsilon$) automatic bridge balance, with "keep-alive" power to preserve balance for months without external power
- All bridge completion built in, including 120- or 1000- and 350-ohm dummies
- Dual polarity two-step double shunt calibration
- Bandpass:
-76kHz (-0.5dB)
-155kHz (-3dB)
- Switchable active filter - a 6-pole Butterworth is standard
- Two simultaneous buffered outputs
- Playback mode to filter and observe or re-record previously recorded low-level data
- Input impedance above 100 megohms

DESCRIPTION

The 2300 System conditions and amplifies low-level signals to high-level outputs for multiple-channel, simultaneous dynamic recording and display on external devices.
Among its features, each 2310B Module includes a built-in power supply, active filtering, two simultaneous outputs, playback mode, wide frequency response, and voltage injection bridge balance.

Up to ten 2310B Modules can be mounted in a Model 2350 Rack Adapter; or up to four modules in a Model 2360B Portable Enclosure; or, a single 2310B can serve as a standalone unit using the 2310-A20 Line Cord and Stabilizer.

Signal Conditioning Amplifier

MODEL 2310B SIGNAL CONDITIONING AMPLIFIER

The 2310B Conditioner/Amplifier Modules accept inputs from strain gages, load/pressure/dc displacement transducers, potentiometers, RTD's and nickel temperature sensors, without any internal modification.
Controls on the 2310B are arranged in sections, permitting easy setup. Clearly marked push-button and single-purpose switches minimize the possibility of operator error during use. With the exception of the playback switch, all operational and monitor controls are on the front panel. Switches for selecting remote sense and specific shunt calibration configurations are located on the printed circuit board inside the unit.

Front Panel

- Calibration: Momentary two-position switches, $\pm \mathrm{A}$ and \pm B, control shunt calibration levels; 4 point.
- LED Display: Set up indicator for amplifier balance, bridge balance and for monitoring the output polarity.
- Filter Section: Push-button controls for activating appropriate low- and high-pass active filters.
- Electronic Bridge Balance Section: Three-position switch--OFF, ON, RESET--for electronic bridge balance; auto ranging up to $\pm 25000 \mu \varepsilon$ with nonvolatile zero storage; yellow light indicates high-range operation or over range condition.
- Vernier trim control is used to refine bridge balance when desired.
- AC IN: Capacitive coupling in the amplifier; eliminates static component of the signal.
- Bridge Excitation: ON-OFF switch for removing bridge excitation from the strain gage or transducer for noise documentation.
- Amplifier Balance: Adjusts amplifier offset.
- Excitation Level: Twelve-position switch; values arranged for doubling power with each step, with one 0.2 to 7 Vdc continuously variable.
- Amplifier Gain Section: Continuously variable potentiometer (1.00 to 11.00) plus push-button course gain multipliers control amplifier gain; direct-reading.
- Battery Test: Momentary push button determines battery level for bridge zero storage.
- Main Power: Turns unit on/off; LED pilot light.
- Pin Jacks: Monitoring of Excitation, Unamplified Input, Amplified Output

Signal Conditioning Amplifier

Rear Panel

- AC Line Switch: Selects nominal 115 or 230 Vac operation.
- Playback Section: Slide switch activates playback operating mode. Connects the input to the filter circuits and post amplifiers. BNC input connector.
- Low-level Output: Full-scale $\pm 1.4 \mathrm{~V}$ level available at this BNC connector for driving various recording devices and low-level analog-to-digital converters.
- High-Level Output: Full-scale $\pm 10 \mathrm{~V}$ level available at this BNC connector for driving an oscilloscope, digital voltmeter, analog-to-digital converter, etc.
- Input Receptacle: All sensor inputs made through this 15-pin quarter-turn connector. Pin selection determines mode of operation (mating plug included).
- Power Connector: Main power input from the rack adapter, portable enclosure or individual line plug. Additional pins for optional remote operation of shunt calibration, bridge excitation (ON/OFF), and electronic bridge balance.

SPECIFICATIONS

All specifications are nominal or typical at $+23^{\circ} \mathrm{C}$ unless noted. Performance may be degraded in the presence of high-level electromagnetic fields.

INPUT:
Strain gages: quarter, half or full bridge (50 to 1000Ω). Built-in 120Ω and 350Ω dummy gages; 1000Ω dummy capability.
Transducers: foil or piezoresistive strain gage types; DCDT displacement transducers; potentiometers.

EXCITATION:

Eleven fixed settings: $0.7,1,1.4,2,2.7,3.5,5,7,10,12$ and $15 \mathrm{Vdc} \pm 1 \%$ max.
One variable setting: 0.2 to 7 Vdc
Current: $0-100 \mathrm{~mA}$, min, limited at 175 mA , max.
Regulation ($0-100 \mathrm{~mA} \pm 10 \%$ line change): $\pm 0.5 \mathrm{mV}$ $\pm 0.04 \%$, max measured at remote sense points. (Local sense: -5 mV , typical, @ 100mA, measured at plug.)

Remote sense error: 0.0005% per Ω of lead resistance (350Ω load).
Noise and ripple: 0.05% p-p, max (dc to 10 kHz).
Stability: $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$.
Level: normally symmetrical about ground; either side may be grounded with no effect on performance.

BRIDGE BALANCE:

Method: counter-emf injection at pre-amp; automatic electronic; dual range; can be disabled on front panel.

Ranges (auto ranging):

$\pm 5000 \mu \varepsilon$ ($\pm 1 \%$ bridge unbalance or $\pm 2.5 \mathrm{mV} / \mathrm{V}$), resolution $2.5 \mu \varepsilon(0.0012 \mathrm{mV} / \mathrm{V})$.
$\pm 25000 \mu \varepsilon$ ($\pm 5 \%$ bridge unbalance or $\pm 12.5 \mathrm{mV} / \mathrm{V}$), resolution $12.5 \mu \varepsilon(0.006 \mathrm{mV} / \mathrm{V})$.
Balance time: 2 seconds, typical.
Manual vernier balance range: $100 \mu \varepsilon(0.050 \mathrm{mV} / \mathrm{V})$.

Signal Conditioning Amplifier

Interaction: essentially independent of excitation and amplifier gain.
Storage: non-volatile digital storage without line power for up to two years.

SHUNT CALIBRATION:

Circuit (two-level, dual polarity): Single-shunt (for stress analysis) across any bridge arm, including dummy gage.
Double-shunt (for transducers) across opposite bridge arms.

Provision for four dedicated leads to shunt external arms.
CAL circuit selected by switches on p.c. board.
Standard factory-installed resistors ($\pm 0.1 \%$) simulate: ± 200 and $\pm 1000 \mu \varepsilon @$ GF=2 across dummy half bridge; $\pm 1000 \mu \varepsilon @$ GF=2 across dummy gage (120 and 350Ω).
$\pm 1 \mathrm{mV} / \mathrm{V}$ (double shunt) for 350Ω transducer
Remote-operation relays (Option Y): four relays (plus remote-reset relay for bridge balance and relay for excitation on/off). Each relay requires 10mA @ 5Vdc, except excitation on/off 25 mA .

AMPLIFIER:

Gain: 1 to 11000 continuously variable. Direct reading, $\pm 1 \%$ max. 10-turn counting knob (X1 to X11) plus decade multiplier (X1 to X1000)

Frequency response, all gains full output:
dc coupled: dc to $145 \mathrm{kHz},-3 \mathrm{~dB}$ max.
dc to $60 \mathrm{kHz},-0.5 \mathrm{~dB}$ max.
ac coupled: 1.7 Hz typ. to $150 \mathrm{kHz},-3 \mathrm{~dB}$ max.
Frequency response versus gain, full output:

GAIN	-0.5 dB	-3 dB
$1-11$	130 kHz	300 kHz
$10-110$	110 kHz	250 kHz
$100-1100$	80 kHz	160 kHz
$1000-11000$	76 kHz	155 kHz

Slew rate: $7.8 \mathrm{~V} / \mu$ s typical
Input impedance: $100 \mathrm{~m} \Omega$, min, differential or common-mode, including bridge balance circuit.
Bias current: $\pm 40 \mathrm{nA}$, typical max., each input.
Source impedance: 0 to 1000Ω each input.
Common-mode voltage: $\pm 10 \mathrm{~V}$.
Common-mode rejection (gain over X100):
Shorted input: 100 dB , min, at dc to 60 Hz ;
90 dB , min, dc to 1 kHz ;
350Ω balanced input: 90 dB , typical, dc to 1 kHz .
Stability (gain over X100):
$\pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, max, RTI (referred to input).
Noise (gain over X100, all outputs):
0.01 to $10 \mathrm{~Hz}: 1 \mu \mathrm{~V}$ p-p RTI.
0.5 to $125 \mathrm{kHz}: 6 \mu \mathrm{Vrms}$, max, RTI.

FILTER:

Characteristic:
Low-pass active six-pole Butterworth standard.
Frequencies ($-3 \pm 1 \mathrm{~dB}$): 10, 100, 1000 and 10000 Hz and wide-band.
Outputs filtered: either one or both (switch-selected on printed circuit board).

AMPLIFIER OUTPUTS:

Standard output: $\pm 10 \mathrm{~V} @ 5 \mathrm{~mA}$, min. Slew Rate: $7.8 \mathrm{~V} / \mu \mathrm{s}$ (typical)
Low-level output: $\pm 1.414 \mathrm{~V}$ (1Vrms) @ 5mA, min.
Linearity @ dc: $\pm 0.02 \%$.
Either output can be short-circuited with no effect on the other.

PLAYBACK:

Input: $\pm 1.414 \mathrm{~V}$ full scale; input impedance $20 \mathrm{k} \Omega$.
Gain: X1 to low-level output; X7.07 to standard output.
Filter selection: As specified above.
Outputs: Both as specified above.
OPERATING ENVIRONMENT:
Temperature: 0° to $+50^{\circ} \mathrm{C}$.
Humidity: 10 to 90%, noncondensing.
POWER:
105 to 125 V or 210 to 250 V (switch-selected), $50 / 60 \mathrm{~Hz}$, 10 watts, max.
Keep-alive supply (for bridge balance): Lithium 3.6V, 1/2AA or equal. Shelf life approximately two years.
SIZE \& WEIGHT:
Panel: $8.75 \mathrm{H} \times 1.706 \mathrm{~W}$ in (222.2 x 43.3 mm).
Case depth behind panel: 15.9 in (404mm).
Weight: 6lb (2.7kg).

Signal Conditioning Amplifier

MODEL 2350 RACK ADAPTER

A prewired rack adapter which accepts up to ten Model 2310B plug-in amplifier modules. The Model 2350 also fits standard $19-\mathrm{in}$ (483 mm) mainframe electronic equipment racks so that multi-channel system configurations can be conveniently housed

POWER:

115 or 230 Vac switch selected in amplifiers, $50 / 60 \mathrm{~Hz}$, 100 Watts max.

SIZE \& WEIGHT:

8.75 H x 19 W x 19.06 D overall ($222 \times 483 \times 484 m m$). $13.5 \mathrm{lb}(6.1 \mathrm{~kg})$.

MODEL 2360B 4-CHANNEL ENCLOSURE

Model 2360B Portable Enclosure includes all ac wiring. Accepts up to four amplifier modules.

POWER:

115 or 230 Vac (switch selected in amplifiers), $50 / 60 \mathrm{~Hz}$, 100 Watts max.

SIZE \& WEIGHT:

9.06 H x $7.20 \mathrm{~W} \times 18.90 \mathrm{D}$ in ($229 \times 183 \times 480 \mathrm{~mm}$)
$6.75 \mathrm{lb}(3.1 \mathrm{~kg})$.

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay Precision Group"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay Precision Group disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay Precision Group's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay Precision Group.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay Precision Group products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay Precision Group for any damages arising or resulting from such use or sale. Please contact authorized Vishay Precision Group personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

